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Classical gravity with higher derivatives
Consider the gravitational action

I =

∫
d4x
√−g(γR − αCµνρσCµνρσ + βR2) .

The field equations following from this higher-derivative action are

Hµν = γ

(
Rµν −

1

2
gµνR

)
+

2

3
(α− 3β)∇µ∇νR − 2α2Rµν

+
1

3
(α + 6β) gµν2R − 4αRηλRµηνλ + 2

(
β +

2

3
α

)
RRµν

+
1

2
gµν

(
2αRηλRηλ −

(
β +

2

3
α

)
R2

)
=

1

2
Tµν

By expanding the action of this theory about flat space, one
deduces the dynamical content of the linearised theory:
positive-energy massless spin-two, negative-energy massive

spin-two with mass m2 = γ
1
2 (2α)−

1
2 and positive-energy massive

spin-zero with mass m0 = γ
1
2 [6β]−

1
2 . K.S.S. 1978
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Static and spherically symmetric solutions
Consider what happens to spherically symmetric static solutions in
the higher-curvature theory. One may choose to work in traditional
Schwarzschild coordinates, for which the metric is given by

ds2 = −B(r)dt2 + A(r)dr2 + r2(dθ2 + sin2 θdϕ2)

In the linearised theory, one then finds the general solution to the
source-free field equations HL

µν = 0, where
C ,C 2,0,C 2,+,C 2,−,C 0,+,C 0,− are six integration constants:

A(r) =

1− C 20

r
− C 2+ em2r

2r
− C 2− e

−m2r

2r
+ C 0+ em0r

r
+ C 0− e

−m0r

r
+1

2C
2+m2e

m2r − 1
2C

2−m2e
−m2r − C 0+m0e

m0r + C 0−m0e
−m0r

B(r) =

C +
C 20

r
+ C 2+ em2r

r
+ C 2− e

−m2r

r
+ C 0+ emr

r
+ C 0− e

−m0r

r
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• As one might expect from the dynamics of the linearised
theory, the general static, spherically symmetric solution is a
combination of a massless Newtonian 1/r potential plus rising
and falling Yukawa potentials arising in both the spin-two and
spin-zero sectors.

• When coupling to non-gravitational matter fields is made via
standard hµνTµν minimal coupling, one gets values for the
integration constants from the specific form of the source
stress tensor. Requiring asymptotic flatness and coupling to a
point-source positive-energy matter delta function
Tµν = δ0µδ

0
νMδ3(~x), for example, one finds

A(r) = 1 + κ2M
8πγr −

κ2M(1+m2r)
12πγ

e−m2r

r − κ2M(1+m0r)
24πγ

e−m0r

r

B(r) = 1− κ2M
8πγr + κ2M

6πγ
e−m2r

r − κ2M
24πγ

e−m0r

r

with specific combinations of the Newtonian 1/r and falling
Yukawa potential corrections arising from the spin-two and
spin-zero sectors.
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Frobenius Asymptotic Analysis

Asymptotic analysis of the field equations near the origin leads to
study of the indicial equations for behaviour as r → 0. K.S.S. 1978

Let

A(r) = as̃r
s̃ + as̃+1r

s̃+1 + as̃+2r
s̃+2 + · · ·

B(r) = btr
t + bt+1r

t+1 + bt+2r
t+2 + · · ·

and analyse the conditions necessary for the lowest-order terms in r
of the field equations Hµν = 0 to be satisfied. This gives the
following results, for the general α, β higher derivative theory:

(s̃, t) = (1,−1) with 5 free parameters

(s̃, t) = (0, 0) with 3 free parameters

(s̃, t) = (2, 2) with 6 free parameters

Lü, Perkins, Pope & K.S.S., 1508.00010
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(s̃, t) = (2, 2) solutions without horizons
For asymptotically flat solutions with nonzero spin-two Yukawa
coefficient C 2− 6= 0, numerical solutions are found that can continue
on in to mesh with the (s̃, t) = (2, 2) family found by Frobenius
asymptotic analysis around the origin. Some such solutions have no
horizon; examples have been found numerically in the m2 = m0 theory
B. Holdom, Phys. Rev. D66 (2002), hep-th 084010 and in the general R − C 2 + R2 theory
Lü, Perkins, Pope & K.S.S., 1508.00010; B. Holdom & J. Ren, 1612.04889 [gr-qc]

Horizonless solution in R − C2 theory, behaving as r2 in both A(r) and B(r) functions as

r → 0.
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Wormholes
Another solution type found numerically has the character of a
“wormhole”. Such solutions can have either sign of M ∼ −C 20

and either sign of the falling Yukawa coefficient C 2−. As an
example, one finds a solution with M < 0 in the R − αC 2 theory

2.8 3.0 3.2 3.4 3.6 3.8 4.0
r

0.1

0.2

0.3

0.4

0.5

B(r)
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In this solution, f (r) = 1/A(r) reaches zero at a point where
B(r) = a20 > 0. Making a coordinate change r − r0 = 1

4ρ
2, one

then has asymptotically as r → r0

ds2 = −(a20 + 1
4B
′(r0)ρ2)dt2 +

dρ2

f ′(r0)
+ (r20 + 1

2 r0ρ
2)dΩ2

which is Z2 symmetric in ρ and can be interpreted as a
“wormhole”, with the r < r0 region excluded from spacetime.
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Black hole solutions with horizons
If one assumes the existence of a horizon and assumes also
asymptotic flatness at infinity, then a no-hair theorem for the trace of
the field equations exists which implies that the Ricci scalar must
vanish: R = 0. W. Nelson, 1010.3986; Lü, Perkins, Pope & K.S.S., 1508.00010 This
significantly simplifies the analysis of the solutions. The field
equations then become identical to those in the β = 0 case, i.e. with
just a (Weyl)2 term and no R2 term in the action.

Counting parameters in an expansion around the horizon, subject to
the R = 0 condition, one finds just 3 free parameters. The
Schwarzschild solution, satisfying Rµν = 0, is just such an
asymptotically flat solution with a horizon, and it is characterised by
two parameters: the mass M of the black hole, plus a trivial g00
normalisation parameter at infinity. So in the higher-derivative
theory, there is just one extra “non-Schwarzschild” (NS) parameter
relevant to the family of asymptotically flat solutions with a horizon.
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Non-Schwarzschild (NS) Black Holes
Lü, Perkins, Pope & K.S.S., 1508.00010; 1502.01028

Now the question arises: what happens when one moves a finite
distance away from a Schwarzschild solution in terms of the NS
parameter? In general, one expects the solution to violate
asymptotic flatness at spatial infinity for small deviations from
Schwarzschild. But what about increasing the non-Schwarzschild
parameter further? Does the loss of asymptotic flatness persist, or
does something else happen, with solutions arising that cannot be
treated by a linearised analysis in deviation from Schwarzschild?

This can be answered numerically. In consequence of the trace
no-hair theorem, the assumption of a horizon together with
asymptotic flatness requires R = 0 for the solution, so the
calculations can effectively be done in the R − αC 2 theory with
β = 0, in which the field equations, thankfully, can be reduced to a
system of two second-order equations.
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The study of NS solutions is more easily carried out with a metric
parametrization

ds2 = −B(r)dt2 +
dr2

f (r)
+ r2(dθ2 + sin2 θdφ2) ,

i.e. by letting A(r) = 1/f (r).

For B(r) vanishing linearly in r − r0 for some r0, field-equation
analysis shows that f (r) must similarly be linearly vanishing at r0,
and accordingly one has a horizon. One can thus make
near-horizon expansions (note c = 1 is arrangeable by t → c−1/2t)

B(r) = c
[
(r − r0) + h2 (r − r0)2 + h3 (r − r0)3 + · · ·

]
f (r) = f1 (r − r0) + f2 (r − r0)2 + f3 (r − r0)3 + · · ·

and the parameters hi and fi for i ≥ 2 can then be solved-for in
terms of r0 and f1. For the Schwarzschild solution, one has
f1 = 1/r0, so it is convenient to parametrize the deviation from
Schwarzschild using an NS parameter δ with

f1 =
1 + δ

r0
.
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The task then becomes one of finding values of δ 6= 0 for which
the generic rising exponential behaviour as r →∞ is suppressed.
What one finds is that there does indeed exist an asymptotically
flat family of NS black holes which crosses the Schwarzschild
family at a special horizon radius rLich0 . For α = 1

2 , γ = 1, one
finds the following families of black holes:

M

r
0

Black-hole masses as a function of horizon radius r0, with a crossing point at rLich
0 '

0.876. The red family denotes Schwarzschild black holes and the blue family denotes

NS black holes.
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The Lichnerowicz Operator

Now let us study in some more detail the point where the new
black hole family crosses the classic Schwarzschild solution family.
We can study solutions in the vicinity of the Schwarzschild family
by looking at infinitesimal variations of the higher-derivative
equations of motion around a Ricci-flat background. For the δRµν
variation of the Ricci tensor away from a background with
Rµν = 0, one obtains

γ(δRµν − 1
2gµν δR) + 2(β − 1

3α)(gµν�−∇µ∇ν)δR

−2α� (δRµν − 1
2gµν δR)− 4αRµρνσ δR

ρσ = 0 .
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Restricting attention to asymptotically flat solutions with horizons,
however, we know from the trace no-hair theorem that R = 0 so
δR = 0 and the δRµν equation simplifies, upon recalling that
m2

2 = γ
2α , to (

∆L + m2
2

)
δRµν = 0 ,

where the Lichnerowicz operator is given by

∆L δRµν ≡ −�δRµν − 2Rµρνσ δR
ρσ .

Restricting attention to the m2
2 > 0 nontachyonic case, one sees

that black hole solutions deviating from Schwarzschild must have a
λ = −m2

2 negative Lichnerowicz eigenvalue for δRµν .
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The Gross-Perry-Yaffe eigenvalue

In a study of the thermodynamic instability of the Euclideanised
Schwarzschild solution in Einstein theory, Gross, Perry and Yaffe
Phys. Rev. D25 (1982), 330 found that there is just one normalisable
negative-eigenvalue mode of the Lichnerowicz operator for
deviations from the Schwarzschild solution. For a Schwarzschild
solution of mass M, it is

λ ' −0.192M−2

i.e. m2M ' 0.438 '
√
.192

I Comparing with the numerical results for the new black hole
solutions of the higher-derivative gravity theory, this
corresponds nicely with the point where the NS black hole
family crosses the Schwarzschild family.
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Gregory-Laflamme Instability

The Gregory-Laflamme instability is an S-wave (` = 0) spherically
symmetric instability, originally found in the context of 5D black
strings.

In the higher-derivative theory, an analogous instability exists for
low-mass Schwarzschild black holes, but it disappears for black
hole masses M ≥ Mmax where

m2Mmax

M2
Pl

= .438

This is precisely the crossing point between the family of NS black
holes and the Schwarzschild family.

Note that the existence of this S-wave instability depends critically
on the presence in the theory of the m2 massive spin-two mode.
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Thermodynamic Implications for Instability

The D = 4 Wald entropy formula

S = −1
8

∫
+

√
hdΣ εabεcd

∂L

∂Rabcd

gives results that respect the first law of black-hole
thermodynamics, dM = TdS .

For the NS black holes in D = 4, one obtains the following
numerical relations between mass, temperature and entropy:

MNS ≈ 0.168 + 0.131S − 0.00749S2 − 0.000139S3 + · · ·
TNS ≈ 0.131− 0.0151S − 0.000428S2 + · · ·
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Recall that for Schwarzschild black holes, one has the classic
mass-temperature relation MSch = 1

8πT . Eliminating the entropy
for the NS black holes, one obtains the corresponding relations
between black-hole mass and temperature for Schwarzschild and
NS black holes:

0.05 0.10 0.15 0.20 0.25

- 2

- 1

0

1

2

T

M

Mass versus temperature relations for Schwarzschild (dashed red) and non-Schwarzschild

(solid blue) black holes.

Note that, when compared at the same mass M, the NS black
holes are always colder than the Schwarzschild black holes (except
at the Lichnerowicz point).

17 / 26



Free Energy
For the free energy F = M − TS , one has the following situation,
implying a switchover in stability properties between the
Schwarzschild and the NS solutions:

0.05 0.10 0.15 0.20

0.2

0.4

0.6

0.8

T

F

Schwarzschild BH
non Schwarzschild BH

Free energy for Schwarzschild (dashed red) and non-Schwarzschild (blue) black holes.

Lower free energy corresponds to greater stability.
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Thermodynamic versus dynamical instabilities

Gubser and Mitra proposed a relationship between thermodynamic
and dynamical instabilities: time-dependent dynamical instability
cannot occur without a corresponding thermodynamic instability in
the related finite-temperature Euclidean theory. JHEP 0108 (2001) 018

This has been proved in the context of axisymmetric black holes in
Einstein theory by Hollands and Wald Commun.Math.Phys. 321 (2013) 629 .

Assuming the same relation holds between dynamical and
thermodynamic instabilities in the higher-derivative gravity theory,
and taking into account the known Gregory-Laflamme instability
for Schwarzschild black holes below the Lichnerowicz crossing
point, one obtains a clear suggestion for the respective domains of
stability and instability of the Schwarzschild and the NS black
holes.
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Schwarzschild BH
non Schwarzschild BH

0.5 1.0 1.5 2.0

- 4

- 3

- 2

- 1

1 (cold) Stable

(hot) Unstable
(cold) Stable

(hot) Unstable

Lichnerowicz crossing
& stability boundary

r0

M

Classical stability regimes. The dashed red line denotes Schwarzschild black holes and

the solid blue line denotes non-Schwarzschild black holes.
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Numerical study of non-Schwarzschild black holes
Owing to the highly nonlinear nature of the field equations,
connecting the strong-field region near r = 0 to the weak-field
r →∞ region of the NS black holes requires a careful numerical
study which was made by Bonanno and Silveravalle.
Phys.Rev.D 99 (2019) 10, 101501; 1903.08759 [gr-qc]

Recall that for asymptotically flat solutions with a horizon, there is
a trace no-hair theorem which makes it sufficient to study just the
Einstein-Weyl theory I =

∫
d4x
√−g(γR − αCµνρσCµνρσ).

Assume the existence of a horizon at radius r0 and asymptotic
flatness, again writing the metric ansatz as
ds2 = −B(r)dt2 + dr2

f (r) + r2d2Ω. The asymptotically flat linearised
solution near the horizon has the form

B(r) = h1(r − r0) + h2(f1, r0) (r − r0)2 + · · · (convention: h1 = 1)

f (r) = f1 (r − r0) + f2(f1, r0) (r − r0)2 + · · ·
where fi>1 and hi>1 are determined by f1 and r0. The surface
gravity is κ = 1

2

√
f1h1 and the temperature is T = κ

2π .
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The form of an asymptotically flat linearised weak-field solution as
r →∞ is characterised by two essential parameters, M and S2−:

f (r) = 1− 2M

r
+ S2− e

−m2r

r
(1 + m2r)

B(r) = 1− 2M

r
+ 2S2− e

−m2r

r

Starting from a solution of this form at a radius r � r0 and then
numerically integrating inwards towards a fitting radius rf , the task
is then to use shooting methods to make at r = rf a match with a
solution as expanded around a horizon at some radius r0.

Having achieved such a match between the solution at infinity and
at the horizon, the numerical integration can then be continued
further inwards towards the origin at r = 0 for comparison with the
solution families found by Frobenius analysis at the origin.
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What is found is that there is a changeover in the near-origin
behaviour, depending on the value of r0. For definiteness, the
analysis was performed with m2 = 1. Black holes with M > 0 then
only exist for S2− > −1.5. NS black holes with S2− > 0 are colder
than Schwarzschild black holes with the same horizon radius, while
NS black holes with S2− < 0 are hotter.

3

The location of the fitting point can be changed in or-
der to improve the numerical stability of the system, al-
though our results do not depent on its precise location.
It is convenient to set m = 1 so that the radial coordinate
r, and the constants M , S2− in eq.(6) are all measured
in units of 1/m. By continuously changing the value of
rH it is therefore possible to systematically explore the
dependence of the asymptotic parameters of the solution
on the parameters h1 and f1 of the local expansion near
the horizon. Moreover, once the convergence is achieved,
we further shoot inward towards r = 0 in order to char-
acterize the behavior of the metric coefficients near the
singularity.

At last, the space of possible solutions is described in
Fig.(1), where the inset on the right shows the region
around rH = 0. Black holes with M > 0 only exist for
S2− > −1.5. Moreover, black holes with S2− > 0, repre-
sented with a blue line in the inset of Fig.(1), are colder
than the Schwarzschild black hole with the same horizon
radius, while black holes with S2− < 0 are instead hotter.
If we compare the temperature of the non-Schwarzschild
BH and the Schwarzschild ones with respect to the mass
M , we find that the non-Schwarzschild ones are always
colder. Black holes with large event horizon always have
M < 0. In the limit of zero temperature as rH → 0,
the mass below rH < 0.4 assumes the constant value
M = M0 = 0.62.

s

t

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-2

-1

0

1

2

GR

NS-Hot

NS-Cold

FIG. 3. Near-origin behaviour of the black hole solutions
described in Fig.(1).

The singularity at r = 0

It is interesting to study the structure of the metric
coefficient near r = 0 as we move from the hot branch
to the cold branch in Fig.(1). Therefore for each value of
rH we further integrate towards r = 0 in order to study
the running exponents

t = r∂rlnh(r), s = r∂rln f(r) (12)

which can be determined by stopping the numerical inte-
gration at a limiting value of the radius (we used r = 10−6

in order to preserve numerical stability). The results are
depicted in Fig.(3) where it can be noticed that as rH
runs from the hot branch to the cold branch, (s, t) run
from (−1,−1) to (−2, 2) (note that in our notation s has
the opposite sign of the one in [15]). The limiting con-
figuration reached in the rH → 0 limit is the vanishing
metric solution described in [16].

To study this transition in detail let us define x =
− ln r and rewrite eq.(7) and eq.(9) as a function of s(x)
and t(x) in (12). Exploiting the fact that f is large to-
wards r = 0 (x = ∞) it is easy to obtain the following
autonomous dynamical system

ds

dx
= −−2s2t+ s2 − st2 − 8s+ t3 − 3t2 − 8

2(t− 2)
(13a)

dt

dx
= −1

2
(−st− 4s− t2 − 2t− 4) (13b)

Stationary solutions at x = ∞ determine the behavior
of the metric near r = 0. There are two fixed points
(in addition to the trivial one (0, 0)), A = (−1,−1)
which is an attractive improper node, and B = (−2, 2)
which is an attractive node. Therefore as we move in
the (M,S2−) plane, the asymptotic behaviour near r = 0
is completely described either by A or B in complete
agreement with the Frobenius analysis in [15]. We find
that around rH = 0.86 a transition occurs, as shown
in Fig.(3), between a singular and a vanishing metric in
the origin, in correspondence with the transition between
the hot and cold branch. Note however that, due to the
improper node character of the point A, the approach
towards (−1, 1) is much slower, as displayed in Fig.(3).

Non-Schwarzschild black hole for m2 < 0

Motivated by recent results on the Asymptotic Safety
scenario, we now consider the case α < 0 which implies
that the spin-2 mass is imaginary. In this case the large
distance expansion reads

h(r) = 1 + Ct −
2M

r
+ 2A2

cos (|m|r + ϕ)

r

f(r) = 1− 2M

r
+A2

cos (|m|r + ϕ)

r
+

+A2|m| sin (|m|r + ϕ)

(14)

which depends on four unknown constants (two coeffi-
cients M and A2, one phase ϕ, and the constant Ct
which we set to zero in the following). The spacetime
is no longer asymptotically flat and we must require
A2|m| � 1 for our linearized solution to be valid at large
values of the radial coordinate r.

r0

Near-origin behaviour of NS black hole solutions. t = r∂r lnB(r), s = r∂r ln f (r)
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Recalling that f (r) = 1
A(r) (so s̃ = −s), one thus finds a switchover

in behaviour at around r0 ∼ 0.86 from NS-hot black holes with
near-origin behaviour (s, t) ∼ (−1,−1) (as for Schwarzschild) to
NS-cold (−2, 2) solutions with a vanishing metric at the origin.

This study considered, by construction, solutions with horizons, so
it was not going to find the (−2, 2) horizonless solutions found by
Bob Holdom. More general study of the (M, S2−) phase space of
solutions (Alun Perkins’ PhD thesis; unpublished work of Bonanno
and Silveravalle) shows that the horizon solutions are to be found
on the boundaries between (−2, 2) horizonless solutions and
(−1,−1) solutions or between (−2, 2) horizonless solutions and
wormholes.
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4

Notes on adimensionalization and units

In the Einstein-Weyl theory the Spin-2 particle mass m2
2 = γ/2α naturally introduces an energy scale. In the

numerical implementation of the e.o.m. we opted for an adimensionalization in units of such mass. If we denote
physical quantities with a subscript “P” and adimensionalized ones with a subscript “a” we can write down the table
of conversion

Physical quantity m2 units Planck units Constrained value

MP
16πγ
m2

Ma 4
√

2παmpMa MP . 1023MaKg ∼ 10−7MaM�
rP

1
m2
ra 4

√
2παlpra rP . 10−7raKm

S−2,P
1
m2
S−2,a 4

√
2παlpS

−
2,a S−2,P . 10−7S−2,aKm

S−0,P
1
m2
S−0,a 4

√
2παlpS

−
0,a S−0,P . 10−7S−0,aKm

where in the last column we considered the constraint α < 1060 [4]. When dealing with the full quadratic case we
kept the same units, adding the additional parameter ξ = m0/m2.

III Phase diagram of Einstein-Weyl gravity

In Fig. 1 we present the phase diagram of the Einstein-Weyl theory. The different families of solutions have been
combined based on their behaviour:

• Type I: solutions with singular metric in the origin - (−1,−1)1
0 solutions;

• Type II: solutions with vanishing metric in the origin - (−2, 2)1
0 solutions;

• Type III: wormholes - (1, 0)1
r0 , (1, 0)2

r0 , (4/3, 0)3
r0 solutions.

FIG. 1. Phase diagram of the vacuum in Einstein-Weyl gravity

The black line represents Schwarschild black holes, while the blue and red lines represent non-Schwarzschild ones.
The key feature that appears in this diagram is the little likelihood of finding black hole solutions, that populate only
a zero-measure region of the solutions space. As already discussed in [5] we have non Schwarzschild black holes with
positive mass only for a limited range of parameters (M . 0.63∧−1.5 . S−2 . 0.1), and the sign of the Yukawa term
determines different behaviours. The remaining positive mass region is mainly populated by naked singularities and
wormhole solutions, while bachian singularities are present mainly in the M < 0 region. It has to be noted that the
line that delimits the Type I region is sensitive to the specific value of the radius in which we choose to evaluate the

NS Black hole phases in R − C 2 gravity (Courtesy Bonanno and Silveravalle)

• Type I: (s, t) = (−1,−1)0 solutions singular at the origin

• Type II: (−2, 2)0 solutions with vanishing metric at the origin

• Type III: (1, 0)r0 and other wormholes

Solutions with horizons live on the boundaries between the various
Type I, II, III solutions. Schwarzschild solutions lie on the bold
black line along the M axis.
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Overvue

• The I =
∫
d4x
√−g(γR − αCµνρσCµνρσ + βR2) theory has a

richer static classical solution set than Einstein theory: in
addition to the standard Einstein Ricci-flat static vacuum
solutions, there are solutions without a horizon, wormhole
solutions, and also a family of non-Schwarzschild black hole
solutions.

• The Schwarzschild and non-Schwarzschild black-hole solution
families cross at a mass MLich which is related to the
Gross-Perry-Yaffe negative-eigenvalue mode λ of the
Lichnerowicz operator by λ = −m2

2 ' −0.192M−2Lich .

• The Schwarzschild solution family develops a
Gregory-Laflamme S-wave instability for solutions with radii
below a minimum radius rLich0 = 2MLich while thermodynamic
analysis implies that the non-Schwarzschild black holes are
stable for solutions with radii below rLich0 .
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