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Classical gravity with higher derivatives
Consider the gravitational action

| = /d4x\/—g(fyR — aClypo CHP° + BR?).

The field equations following from this higher-derivative action are
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By expanding the action of this theory about flat space, one
deduces the dynamical content of the linearised theory:

positive-energy massless spin-two, negative-energy massive
. . 1 _1 " .
spin-two with mass my = 72(2a) "2 and positive-energy massive

-

. . 1o 11
spin-zero with mass mg = v2[63] 2. kss 1978
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Static and spherically symmetric solutions
Consider what happens to spherically symmetric static solutions in
the higher-curvature theory. One may choose to work in traditional
Schwarzschild coordinates, for which the metric is given by

ds®> = —B(r)dt® + A(r)dr® + r*(d6? + sin® 0dp?)

In the linearised theory, one then finds the general solution to the
source-free field equations Hﬁy =0, where
C,C?0, C?+ (€%, CO*F, C%~ are six integration constants:
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e As one might expect from the dynamics of the linearised
theory, the general static, spherically symmetric solution is a
combination of a massless Newtonian 1/r potential plus rising
and falling Yukawa potentials arising in both the spin-two and
spin-zero sectors.

e When coupling to non-gravitational matter fields is made via
standard h*” T, minimal coupling, one gets values for the
integration constants from the specific form of the source
stress tensor. Requiring asymptotic flatness and coupling to a
point source positive-energy matter delta function

T = (50(50/\4(53( X), for example, one finds
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with specific combinations of the Newtonian 1/r and falling
Yukawa potential corrections arising from the spin-two and

spin-zero sectors.
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Frobenius Asymptotic Analysis

Asymptotic analysis of the field equations near the origin leads to
study of the indicial equations for behaviour as r — 0. kss. 1978
Let

Alr) = asrf4azar™t +agort? 4.
B(r) = bert+ beprrtt 4+ b ortt2 4.
and analyse the conditions necessary for the lowest-order terms in r

of the field equations H,,, = 0 to be satisfied. This gives the
following results, for the general «, 3 higher derivative theory:

(5,t) = (1,-1) with 5 free parameters
(5,t) = (0,0) with 3 free parameters
(5,t) = (2,2) with 6 free parameters

Li, Perkins, Pope & K.S.S., 1508.00010
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(§,t) = (2,2) solutions without horizons
For asymptotically flat solutions with nonzero spin-two Yukawa
coefficient C2~ = 0, numerical solutions are found that can continue
on in to mesh with the (3, t) = (2,2) family found by Frobenius
asymptotic analysis around the origin. Some such solutions have no
horizon; examples have been found numerically in the my = mg theory
B. Holdom, Phys. Rev. D66 (2002), hep-th 034010 and in the general R — C? 4+ R? theory

Lii, Perkins, Pope & K.S.S., 1508.00010; B. Holdom & J. Ren, 1612.04889 [gr-qc]|
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Horizonless solution in R — C? theory, behaving as r? in both A(r) and B(r) functions as

r — 0.

6/26



Wormholes

Another solution type found numerically has the character of a
“wormhole” . Such solutions can have either sign of M ~ —C?°
and either sign of the falling Yukawa coefficient C?>~. As an
example, one finds a solution with M < 0 in the R — aC? theory
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In this solution, f(r) = 1/A(r) reaches zero at a point where
B(r) = a¢ > 0. Making a coordinate change r — ry = %p2, one
then has asymptotically as r — rg

dp?

f’(ro)
which is Z symmetric in p and can be interpreted as a
“wormhole”, with the r < ry region excluded from spacetime.

ds = (a3 + §B/(r0)p°)dt” + = + (15 + $r0p?)d2’
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Black hole solutions with horizons
If one assumes the existence of a horizon and assumes also
asymptotic flatness at infinity, then a no-hair theorem for the trace of
the field equations exists which implies that the Ricci scalar must
vanish: R = 0. w. Netson, 1010.3086: Lii, Perkins, Pope & K.S.S., 1508.00010 1 his
significantly simplifies the analysis of the solutions. The field
equations then become identical to those in the 8 = 0 case, i.e. with
just a (Weyl)? term and no R? term in the action.

Counting parameters in an expansion around the horizon, subject to
the R = 0 condition, one finds just 3 free parameters. The
Schwarzschild solution, satisfying R, = 0, is just such an
asymptotically flat solution with a horizon, and it is characterised by
two parameters: the mass M of the black hole, plus a trivial ggo
normalisation parameter at infinity. So in the higher-derivative
theory, there is just one extra “non-Schwarzschild” (NS) parameter
relevant to the family of asymptotically flat solutions with a horizon.
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Non-Schwarzschild (NS) Black Holes

Lii, Perkins, Pope & K.S.S., 1508.00010; 1502.01028

Now the question arises: what happens when one moves a finite
distance away from a Schwarzschild solution in terms of the NS
parameter? In general, one expects the solution to violate
asymptotic flatness at spatial infinity for small deviations from
Schwarzschild. But what about increasing the non-Schwarzschild
parameter further? Does the loss of asymptotic flatness persist, or
does something else happen, with solutions arising that cannot be
treated by a linearised analysis in deviation from Schwarzschild?

This can be answered numerically. In consequence of the trace
no-hair theorem, the assumption of a horizon together with
asymptotic flatness requires R = 0 for the solution, so the
calculations can effectively be done in the R — acC? theory with

8 =0, in which the field equations, thankfully, can be reduced to a
system of two second-order equations.
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The study of NS solutions is more easily carried out with a metric
parametrization

d2
%2:_ngﬁ+?éy+ﬂw%+sm%w&%

i.e. by letting A(r) = 1/f(r).

For B(r) vanishing linearly in r — ry for some ry, field-equation
analysis shows that f(r) must similarly be linearly vanishing at ry,
and accordingly one has a horizon. One can thus make
near-horizon expansions (note ¢ = 1 is arrangeable by t — c_1/2t)

B(r) = C (I'—I’o)—i—hg(r—r0)2+h3(r—r0)3+...
f(r) = fl(r—r0)+fz(r—ro)2—}—f3(r—r0)3+...

and the parameters h; and f; for i > 2 can then be solved-for in
terms of ry and f;. For the Schwarzschild solution, one has

fi = 1/rp, so it is convenient to parametrize the deviation from
Schwarzschild using an NS parameter ¢ with

fo1to
n
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The task then becomes one of finding values of § # 0 for which
the generic rising exponential behaviour as r — oo is suppressed.
What one finds is that there does indeed exist an asymptotically
flat family of NS black holes which crosses the Schwarzschild
family at a special horizon radius r&i‘?h. For a = % ,7 =1, one

finds the following families of black holes:

M

1

0
05 1.0 15 2.0

Black-hole masses as a function of horizon radius ry, with a crossing point at rg“ic}‘ ~
0.876. The red family denotes Schwarzschild black holes and the blue family denotes
NS black holes.
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The Lichnerowicz Operator

Now let us study in some more detail the point where the new
black hole family crosses the classic Schwarzschild solution family.
We can study solutions in the vicinity of the Schwarzschild family
by looking at infinitesimal variations of the higher-derivative
equations of motion around a Ricci-flat background. For the dR,,,
variation of the Ricci tensor away from a background with

R,, = 0, one obtains

Y(ORw — 38w OR) +2(B — 3a) (g0 — V,V,)R
—2a0(6Ry — 38w 6R) — 4 Rype SRP7 =0 .
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Restricting attention to asymptotically flat solutions with horizons,
however, we know from the trace no-hair theorem that R = 0 so
O0R = 0 and the 0R,,,, equation simplifies, upon recalling that

2

-
m2—2a,to

<AL n mg) SR =0,
where the Lichnerowicz operator is given by
AL 0Ry = —060Ru — 2R,p0e OR™ .

Restricting attention to the m2 > 0 nontachyonic case, one sees
that black hole solutions deviating from Schwarzschild must have a
A = —m?3 negative Lichnerowicz eigenvalue for IR
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The Gross-Perry-Yaffe eigenvalue

In a study of the thermodynamic instability of the Euclideanised
Schwarzschild solution in Einstein theory, Gross, Perry and Yaffe
Phys. Rev. D25 (1982), 330 found that there is just one normalisable
negative-eigenvalue mode of the Lichnerowicz operator for
deviations from the Schwarzschild solution. For a Schwarzschild
solution of mass M, it is

A~ —0.192M 2
0.438 ~ /.102

12

i.e. sz

» Comparing with the numerical results for the new black hole
solutions of the higher-derivative gravity theory, this
corresponds nicely with the point where the NS black hole
family crosses the Schwarzschild family.
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Gregory-Laflamme Instability

The Gregory-Laflamme instability is an S-wave (¢ = 0) spherically
symmetric instability, originally found in the context of 5D black
strings.

In the higher-derivative theory, an analogous instability exists for
low-mass Schwarzschild black holes, but it disappears for black
hole masses M > M,,.x where

my Mmax

M2 Pmax _ 438
Mg,

This is precisely the crossing point between the family of NS black
holes and the Schwarzschild family.

Note that the existence of this S-wave instability depends critically
on the presence in the theory of the my massive spin-two mode.

15/26



Thermodynamic Implications for Instability

The D = 4 Wald entropy formula

oL
_ 1 ab_cd
5——8[r\fhd26 € Rabed

gives results that respect the first law of black-hole
thermodynamics, dM = TdS.

For the NS black holes in D = 4, one obtains the following
numerical relations between mass, temperature and entropy:

Mys =~ 0.168 +0.131S — 0.00749 S2 — 0.000139 53 + - - -
Tns ~ 0.131—0.01515 — 0.000428 S + - - -
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Recall that for Schwarzschild black holes, one has the classic
mass-temperature relation Ms¢, = %. Eliminating the entropy
for the NS black holes, one obtains the corresponding relations
between black-hole mass and temperature for Schwarzschild and
NS black holes:

0.05 0.10 0.15 0.20 T 025

Mass versus temperature relations for Schwarzschild (dashed red) and non-Schwarzschild
(solid blue) black holes.

Note that, when compared at the same mass M, the NS black
holes are always colder than the Schwarzschild black holes (except
at the Lichnerowicz point).
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Free Energy

For the free energy F = M — TS, one has the following situation,
implying a switchover in stability properties between the
Schwarzschild and the NS solutions:

F

08 Schwarzschild BH
non Schwarzschild BH

0.6

0.05 0.10 0.15 020 T

Free energy for Schwarzschild (dashed red) and non-Schwarzschild (blue) black holes.

Lower free energy corresponds to greater stability.
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Thermodynamic versus dynamical instabilities

Gubser and Mitra proposed a relationship between thermodynamic
and dynamical instabilities: time-dependent dynamical instability
cannot occur without a corresponding thermodynamic instability in
the related finite-temperature Euclidean theory. e o108 (2001) 018

This has been proved in the context of axisymmetric black holes in
Einstein theory by Hollands and Wald commun Math Phys. 321 (2013) 629 .

Assuming the same relation holds between dynamical and
thermodynamic instabilities in the higher-derivative gravity theory,
and taking into account the known Gregory-Laflamme instability
for Schwarzschild black holes below the Lichnerowicz crossing
point, one obtains a clear suggestion for the respective domains of
stability and instability of the Schwarzschild and the NS black
holes.
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a,‘s T 1.‘0
Lichnerowicz crossing
T & stability boundary

----- Schwarzschild BH
3 non Schwarzschild BH

Classical stability regimes. The dashed red line denotes Schwarzschild black holes and

the solid blue line denotes non-Schwarzschild black holes.
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Numerical study of non-Schwarzschild black holes
Owing to the highly nonlinear nature of the field equations,
connecting the strong-field region near r = 0 to the weak-field
r — oo region of the NS black holes requires a careful numerical
study which was made by Bonanno and Silveravalle.

Phys.Rev.D 99 (2019) 10, 101501; 1903.08759 [gr-qc]

Recall that for asymptotically flat solutions with a horizon, there is
a trace no-hair theorem which makes it sufficient to study just the
Einstein-Weyl theory | = [ d*x\/=g(vR — aCpups CH*7).

Assume the existence of a horizon at radius ry and asymptotic
flatness, again writing the metric ansatz as

2 . . .
ds? = —B(r)dt? + % + r?d?Q. The asymptotically flat linearised
solution near the horizon has the form
B(r) = hi(r—ro)+ ho(fi, r0) (r — rg)? + - - - (convention: hy = 1)
f(r) = A(r—n)+f(f,n)(r—r)+---
where fi~1 and h;j~1 are determined by f; and ry. The surface
gravity is Kk = %\/flhl and the temperature is T = -
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The form of an asymptotically flat linearised weak-field solution as
r — oo is characterised by two essential parameters, M and 52~

—mor
f(r) = 1- ¥+52—e (1+ mor)
—mor
B(r) = 1-2M 2™
r r

Starting from a solution of this form at a radius r > ry and then
numerically integrating inwards towards a fitting radius rr, the task
is then to use shooting methods to make at r = rr a match with a
solution as expanded around a horizon at some radius rp.

Having achieved such a match between the solution at infinity and
at the horizon, the numerical integration can then be continued
further inwards towards the origin at r = 0 for comparison with the
solution families found by Frobenius analysis at the origin.
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What is found is that there is a changeover in the near-origin
behaviour, depending on the value of ry. For definiteness, the
analysis was performed with m, = 1. Black holes with M > 0 then
only exist for S~ > —1.5. NS black holes with S~ > 0 are colder
than Schwarzschild black holes with the same horizon radius, while
NS black holes with S~ < 0 are hotter.

2

—_

0
— NS-Hot
— NS-Cold

Near-origin behaviour of NS black hole solutions. t = rd,In B(r), s = rd,In f(r)
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Recalling that f(r) = ﬁ (so § = —s), one thus finds a switchover
in behaviour at around rg ~ 0.86 from NS-hot black holes with
near-origin behaviour (s, t) ~ (=1, —1) (as for Schwarzschild) to
NS-cold (—2,2) solutions with a vanishing metric at the origin.

This study considered, by construction, solutions with horizons, so
it was not going to find the (—2,2) horizonless solutions found by
Bob Holdom. More general study of the (M, S2~) phase space of
solutions (Alun Perkins' PhD thesis; unpublished work of Bonanno
and Silveravalle) shows that the horizon solutions are to be found
on the boundaries between (—2,2) horizonless solutions and
(—1,—1) solutions or between (—2,2) horizonless solutions and
wormholes.
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ES

Type I

Type I1 Type III

NS Black hole phases in R — C? gravity (Courtesy Bonanno and Silveravalle)

e Type l: (s,t) = (=1, —1) solutions singular at the origin
e Type Il: (—2,2)p solutions with vanishing metric at the origin
e Type lll: (1,0), and other wormholes

Solutions with horizons live on the boundaries between the various

Type I, 11, 11l solutions. Schwarzschild solutions lie on the bold
black line along the M axis.
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Overvue

e The I = [ d*x\/—g(7R — aCuupo C**P° + BR?) theory has a
richer static classical solution set than Einstein theory: in
addition to the standard Einstein Ricci-flat static vacuum
solutions, there are solutions without a horizon, wormhole
solutions, and also a family of non-Schwarzschild black hole
solutions.

e The Schwarzschild and non-Schwarzschild black-hole solution
families cross at a mass M., which is related to the
Gross-Perry-Yaffe negative-eigenvalue mode A of the
Lichnerowicz operator by A = —m3 ~ —O.192I\/IE£h .

e The Schwarzschild solution family develops a
Gregory-Laflamme S-wave instability for solutions with radii

below a minimum radius roLiCh = 2Mpich while thermodynamic
analysis implies that the non-Schwarzschild black holes are

stable for solutions with radii below rJih .
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